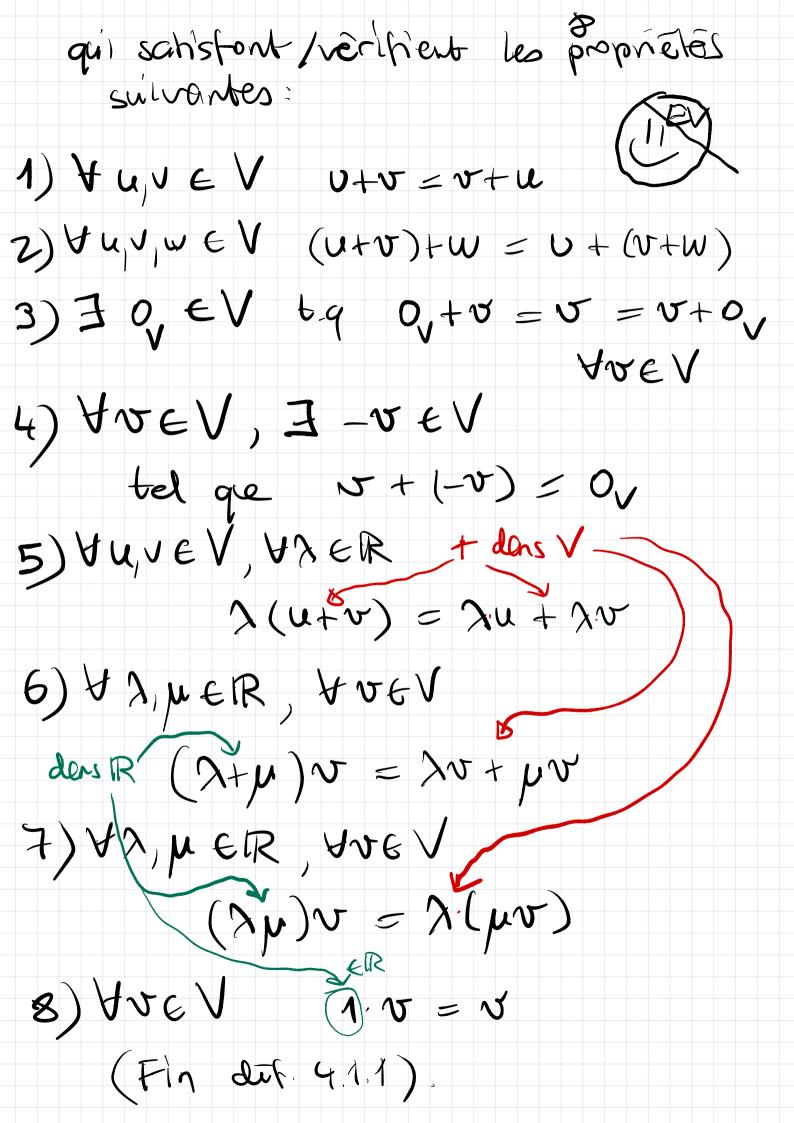
Bref résumé	Onap 1-2-3;	Cours 6.1
		15 Oct 24
Chap 1:	- résondre un syst. - faire des opélé	lin.
		2
	- donner long. so	
	_ pourage système	1 => motrue
on va	espaces R	(n>1)
	- comb. lineaires	
	- (in) dépendance	
	- tronst lineaire	t, R ⁿ -> R ^m
	- vocabulaire	matrices
		transf. lineaires
	- sur / injectivit	ie (p) ectivite
chap2:	- matrices et	op. matriciales
		7,
	- transposée,	nerse
	- trans posée, - matr, étéme	entaire
	- méga-théor	ène

Chap3. Déterminants
Liste ingard (nothinhab -
- règles de conteels
_ super-thm (det(AB)
- matrices élèm et déternirant
- Addendum
_ (hyper) volumes

Chap 4: Espaces vectoriels: But: Abstraire l'ensomble R' muni de ses structures (G. Peano, 1888)

un scalaire 841 Espaces vectoriels Def 4.1.1, on nomme 1R-espace vectoriel on espace ectoriel (réel), tout ensemble non vide V, muni, de deux structures/operations appelées: addition (interne à V) multiplication per un scalaire (ER) λ) $\forall \times \forall \longrightarrow \forall$ (v,w) +> v+w $2) \mathbb{R} \times V \longrightarrow V$ $(\lambda, 5) \longmapsto \lambda V$



Notabene. Un espace rectoriel V est un ensemble dens lequel on peut taire des combinaisons liveoires de ses éléments: $\lambda, \mu \in \mathbb{R}$ $\longrightarrow \lambda u + \mu v \in V$ s) u,veV Def 4.1.2: - les éléments de V s'appellent retours

- les éléments de V s'appellent rectairs - Ov E V s'appelle le recteur noul (et il est unique) - Hor E V, le recteur - v est l'oppose de v (et il est unique)

Soit (V,+,·,ov) Propriétés 4,13 un espace certoriel alors on a 1) $o_{R} v = o_{V}$ AREA $2) \quad \lambda \cdot O_{V} = O_{V}$ YXER 3) $-v = (-1) \cdot v$ AneA deux de 1) calculons, pour veV, $O_{R} = (O+O) = O_{R} + O_{R} + O_{R}$ $O_{R} = (O+O) = O_{R}$ $O_{R} = O_{R}$ $O_{R} = O_{R}$ 0+0=0 R Posons W = 0.7, on a W = W + W (3) - W $W-W=Q_V=W=Q_RV$ (after point 1)

Exemples 4.1.3:

0) L'ensonble
$$V = 30_R$$

est un espace rectorel appelé respace rul

opérations:
$$\begin{cases} 0+0=0 \\ \lambda \cdot 0=0 \end{cases}$$

$$\lambda \cdot 0 = 0 \quad \forall \lambda \in \mathbb{R}$$

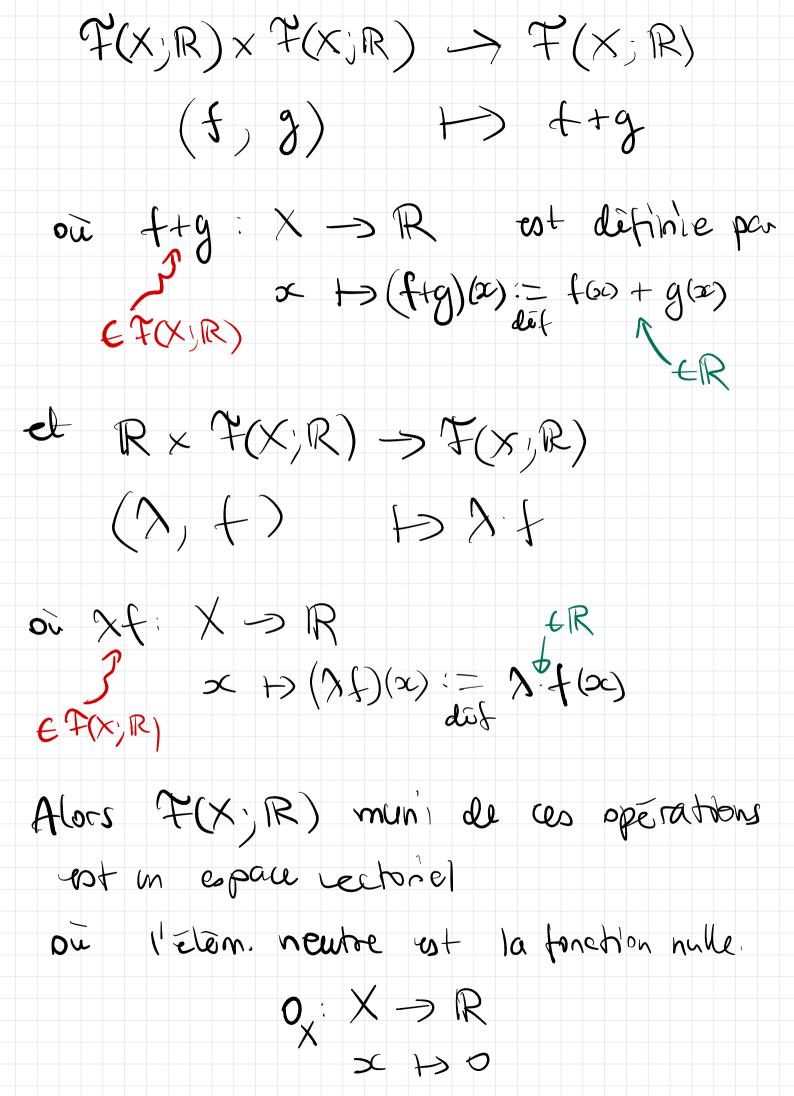
(+ gênêral.
$$V \leq 50_{R^n}$$
)

$$\mathbb{R}^{n} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x \in \mathbb{R}^{n} \right\}$$

man, de Vadd. Hon ectorielle et la mult, par un scalaire dif ou chop 1 est in espace ectoriel.

comme suit:

et définissons + et.



Rem: pour
$$f,g \in \mathcal{T}(X,R)$$

on $a = g$ (dons $f(X,R)$)

 $AD f(x) = g(x)$ $\forall x \in X$.

2.0) $X = \{1,...,n\}$ $P \in \mathbb{N} \setminus \{0\}$
 $P \in \{1,...,n\}, \mathbb{R}$ bijection \mathbb{R}^n
 $P \in \{1,...,n\}, \mathbb{R}$ $P \in \{1,...,n\}$
 $P \in \mathbb{R}^n$
 $P \in$

2-1) Si X=N, alors T(N) R) = 11 ens. des soites de ronbres roels en effet à toute touchon f: N > R n +> f(n) on associe la suite (20n) nem define $pr x_n = f(n)$ En particulter F(N)R) est un espace certoniel et donc on peut faire des comb lineaires (CL) de suites. $2.2) X = \mathbb{R}$ F(R,R) espace cechonel des foretions reles à 1 vende

ex:
$$f(t) = cos(t) + \pi - t^2 + e^t$$
 $g(t) = sin(4t^2)$
 $f,g \in F(R,R)$

done on peut considérer

 $(3f - 5g)(t)$
 $= 3cos(t) + 3\pi - 3t^2 + 3e^t - 5sin(4t^2)$

3) Espaces des polyrônes P_n
 $P_n \subset F(R,R)$ le sous-envenke

 $P_n = \{f \in F(R,R) \mid \exists a_0,a_1,...,a_n \in R \text{ tels } ge \text{ } f(t) = a_0 + a_1 t + ... + a_n t^n \}$
 $v \in R$
 $v \in R$

Rem/det/coppel; plb) = ast. tant" a ER on dupinit le digré de p comme s) p(6)=0 4t $deg(p) = \begin{cases} -00 \\ max si \end{cases}$ ta aito (si p(t) = 0
pour unt GR) $deg(t^3+1)=3$ dig (4) = 0 dig (0) = -0 4) Mmxn (R) = 1/esp des natrices mxn muni de l'add matrichelle et la mult, par un scalaire (vues au chap2) on peut do-c tare des C.L. de notrices de nêvre taille.

84.2. Sous-espaces rectoriels (lay. p. 207) Def 4.2.1: Soit V un espace cetto riel et WCV un sous-ensemble. On dit qe W est un sans-espace (rectioniel) de V s'il varifie a) $O_{V} \in W$ b) tyreW, on doit avoir UtveW c) the Wet 43ER, on doit awair 2·u < W (West stable) per addition et multiplipar Proposition 4.2.2.

1) WC V & espace rectoried. Alors W est un sour espace de V ¿ et seul. s', i) W est non vide ii) Yu,v EW, YXER

Ju+v EW

2) WCV est un sous-espace

Jed West von vide et stable per C. L (Sut por EW)

40 West un ospace cetoriel

par les néres opérations que V

Exemples (jendi):